INTRODUCTION TO ALGEBRA

- Algebra is the practice of using expressions with letters or variables that represent numbers. Words can be changed into a mathematical expression by using the words, plus, exceeds, diminished, less, times, the product, divided, the quotient and many more.
- When given an algebraic expression, it can be solved by filling in a number for the variable.
- Word problems can be turned into variable expressions by changing the words to mathematical terms.
- If an expression has more than one variable expression, it can be

- Words can be changed into mathematical terms. Look at the following words and translate them into mathematical terms:

Ex. Five times a number minus three $\rightarrow 5 \cdot n-3=5 n-3$

- Each word represents a mathematical term. Once this is done, the expression can either be left this way or solved if given a value for n.
- Word problems are also changed into variable expressions in the same way. Look at this word problem:

Jack rented a movie. The store charged $\$ 1.99$ for the first day and $\$.50$ for each day after that. If Jack had the movie for d days, what expression could be used to represent the cost of renting a movie in terms of d?
$\$ 1.99$ for the first day and $\$.50$ for each day after that
$(.50 \cdot \mathrm{~d}) \rightarrow$ the expression is $\mathbf{1 . 9 9 + . 5 0 d}$
This expression can be solved when 3 (or any other number) is substituted for d, the number of days Jack had the movie.
-

Seventeen is subtracted from both sides to solve for x . On the left side, the numbers cancel out and on the right side $27-17=$ 10, the answer.

Try This!

1. Solve if $\mathbf{n}=\mathbf{3}$:
$7-n$
$2 n+8$
$4 n \div 6$
2. Translate into an algebraic expression:
o Six times a number minus two
3.

$11 x+14 y-5 x+2 y$
$6 x-64-3 x$
5. Solve by using inverse operations:

$$
x+14=67 \quad 5 x=45 \quad x / 2=42
$$

