RATIOS AND PROPORTIONS

- Numerical proportions compare two numbers. A proportion is usually in the form of $a: b$ or a / b.
o There are 4 parts to a proportion and it can be solved when 3 of the 4 parts are known.
o Proportions can be solved using the Cross Product Property, which states that the cross products of a proportion are equal.
o Proportion equations can be used only when comparing equal proportions.
- Similar fiaures have eaual correspondina anales and corresponding

o A unit rate is when the denominator of a proportion is one. Miles per hour is an example of a unit rate. When comparing different unit rates, a better buy decision can be made.
- A proportion equation is used when one ratio or rate is known and only part of another ratio or rate is known.

How to use ratios and proportions

- A ratio is used to compare items with the same unit.
o For example, if School A won 18 out of 24 games, the ratio of winning games to total games would be $3 / 4$. To compare this to School B that won 36 out of 48 games, the ratio would have to be found. The ratio of winning games to total games for School B is also 3/4. Therefore both schools have the same ratio of winning games to total games.
- A rate is used to compare items with different units.
o For example, if Renee drove 135 miles in 3 hours, her average

so 125 minutes or about 2 hours

With proportional equations, it is very important that the correct units are lined up in order to find the correct result.

- Similar figures also use proportion equations. Any object, whether a window, picture frame or pillow can be similar to another object. As long as it is stated that the two objects are similar, a proportion can be used to compare them and solve for any missing measurement.
- When a ratio of an object is found, the probability of that ratio happening can also be found. For example, if 29 out of 400 people read the newspaper everyday, there is a 29/400 or . 0725 probability that a person reads the newspaper everyday.

Try This!

1. What is the ratio of wins to losses for the Hawks if they won 18 games and lost 3 games?
2. If Brian got paid $\$ 52$ after working 8 hours, what is his hourly rate?
3. What is a better buy, a 4 lb . bag of peanuts for $\$ 2.59$ or a 10 lb . bag of

4. If eighteen people out of 30 drive to work, what is the probability that a person drives to work? What is the probability that a person does not drive to work?
