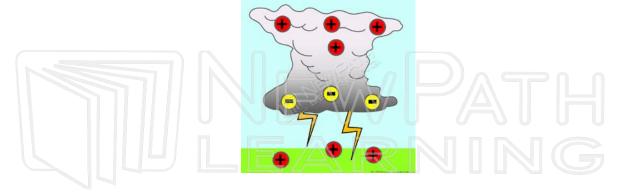


ELECTRICITY


Charged Particles

Electric charges are either positive (+) or negative (-). The **protons** in an atom have a positive charge and the **electrons** around the atom have a negative charge.

If two particles have similar charges, they repel each other, but, if they have opposite charges, they attract each other. This explains why an atom holds together. The positively charged protons in the nucleus exert a strong attraction for the negatively charged electrons that surround it

light toward the positive charges.

LESSON CHECKPOINT: What is the difference between an electrical current and electricity?

Charged Particles in Motion

This flow of electrons from one place to another is called **electricity**, an **electrical current** or **electrical energy**. In order for this flow to occur, there has to be an electrical **circuit** or pathway. As long as the circuit is complete, electricity flows, but when the circuit is broken, the current stops.

is measured in units caned onims. When resistance increases, it makes it more difficult for the current to flow. **Conductors**, like wire, have much less resistance than **insulators** like wood.

LESSON CHECKPOINT:

What are the terms for electric potential, electric current and electrical resistance?

Ohm's Law

The mathematical relationship between volts, amps, and ohms is called **Ohm's Law**. The formula for this law is shown below:

I=E/R or amperage equals voltage divided by resistance.

Notice how this law confirms what we were just saying about electrical resistance. If the resistance increases and the potential does not change, the result is a decrease in amperage.

Types of Circuits

The two types of electrical circuits are **series** and **parallel**. The diagram below shows both types.

Please <u>Sign In</u> or <u>Sign Up</u> to download the printable version of this worksheet

On

not

bulb 1 were taken out, electricity would still be able to flow through bulbs 2 and 3.

LESSON CHECKPOINT:

What is the difference between a series and a parallel circuit?

Electrical Power

Electrical **power** is measured in units called **watts**.

The formula for calculating wattage is shown below:

Power = voltage x current OR P = V x I

The formula tells us that by increasing either the potential or the actual amount of current, we will increase the wattage.

Batteries

Batteries are **electrochemical** cells. In an electrochemical cell, chemical energy is converted to electrical energy. In the dry cell

Safety Reminders

While working with electricity, safety should always be kept in mind. Many people are killed every year, especially in Florida, by lightning.

 To avoid being struck by lightning, remember to stay away from tall trees and other tall structures if you are outside during a storm.

If you are inside a home, you are normally safe from lightning but you still could be hurt by electric shocks or short circuits.

- Since water conducts electricity, using dry hands while using electrical appliances is important.
- Make sure your home is equipped with fuses and circuit breakers that break the electrical circuit if too much current starts to flow.

