

STARS, GALAXIES AND THE UNIVERSE

Types of Telescopes

Telescope literally means *far seeing*, from the Greek words *tele* meaning *far* and *skopein* meaning *to see or to look*. The word *telescope* most usually refers to **optical telescopes** that receive the visible wavelengths of light. There are also sophisticated telescopes that receive wavelengths from other parts of the electromagnetic spectrum, such as infrared and X-ray radiation.

There are several types of optical telescopes.

- **Refracting telescopes** receive light through a lens and the image is then viewed through an eyepiece.
- Reflecting telescopes reflect light off a series of mirrors. The

- Our atmosphere makes stars look fuzzy.
- Pollution and humidity make it difficult to see the stars.
- Light pollution makes it more difficult to see distant lights from the skies.

© Copyright NewPath Learning. All Rights Reserved. Permission is granted for the purchaser to print copies for non-commercial educational purposes only. Visit us at www.NewPathWorksheets.com.

The best images from land-based optical telescopes, therefore, are from telescopes that are on mountaintops stationed far away from other human activity where the atmosphere is thinner and extraneous light does not obscure the view.

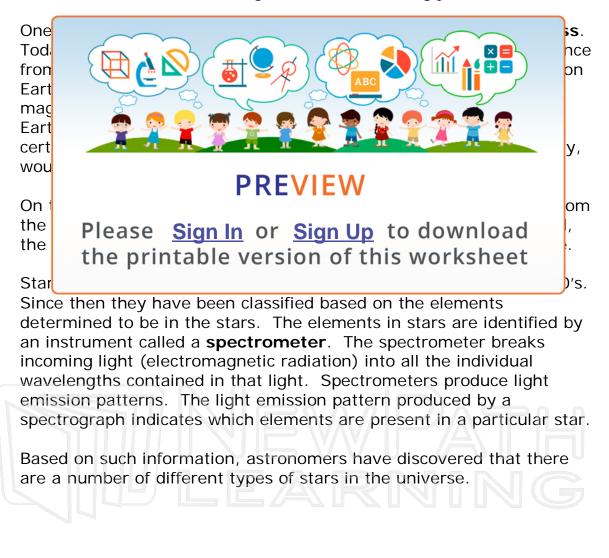
Beyond Earth's Atmosphere

Because the atmosphere, even at high altitudes, refracts light from stars and planets, the best images come from telescopes outside the Earth's atmosphere. Another physical reality is that some electromagnetic radiation cannot be detected on Earth. For example, X-ray telescopes must be outside the Earth's atmosphere because the atmosphere blocks X-rays from reaching the Earth. The Chandra Xray telescope, pictured here, is one example.

PREVIEW

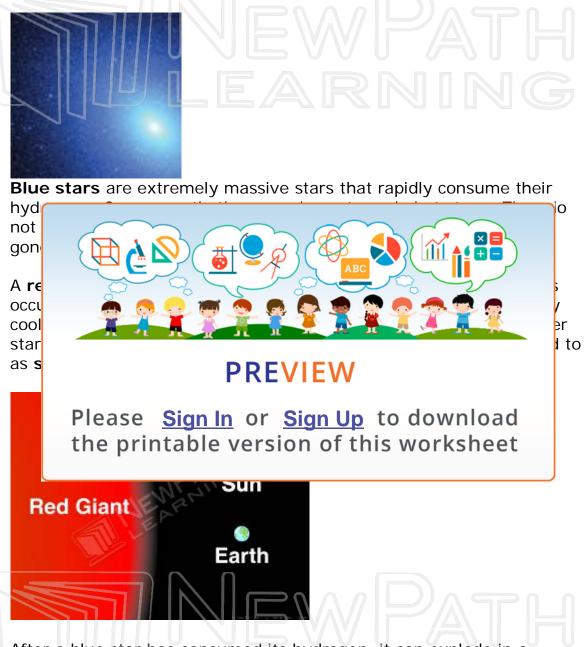
Please <u>Sign In</u> or <u>Sign Up</u> to download the printable version of this worksheet

To get the clearest view of the universe, one must get beyond Earth's atmosphere and use space-based telescopes. It may be very surprising to discover that some of the most basic information about our universe has been discovered very recently using spacebased telescopes. In 1990, the Hubble


© Copyright NewPath Learning. All Rights Reserved. Permission is granted for the purchaser to print copies for non-commercial educational purposes only. Visit us at www.NewPathWorksheets.com.

Space Telescope (named in honor of the great 20th century astronomer Edwin Hubble) was launched by NASA and has provided some of the most spectacular images of the universe ever seen. Despite a number of technical troubles, the Hubble telescope (shown in flight) has provided some of the most important images of stars, planets, and other phenomena in space.

Characteristics of Stars


From ancient times, observers of the sky have noticed that stars are different from one another. Some are brighter. Some are bluish. Some are red. Ancient astronomers attempted to *categorize* stars based on their brightness. Simply standing under the night sky and observing what they could see with their eyes, they would describe their characteristics and categorize them accordingly.

The Lives and Deaths of Stars

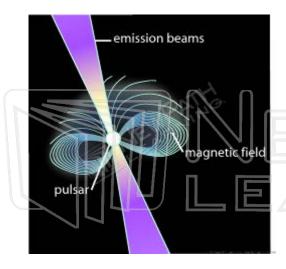
The colors of stars give an indication as to the relative temperature of that star. Red stars are cooler. Blue stars are hotter. The colors also indicate the relative age of the star.

After a blue star has consumed its hydrogen, it can explode in a violent flash. Heavy elements like lead, gold, and silver are created by this explosion. This is literally the death of the star. Astronomers call this phenomenon a **supernova**. This NASA image (below) shows the remains of a supernova explosion.

Small, very hot stars that were once the center of younger stars are actually dying stars. They are known as **white-dwarf** stars. No nuclear fusion takes place in white-dwarf stars. They shine due to their residual heat

 The mas
 Image: Constraint of the printable version of this worksheet

 Preview


 Sun

There are yet other types of stars. For example, a **neutron star** is the remains of a massive star that has collapsed on itself. A neutron star that is spinning is known as a **pulsar**.

© Copyright NewPath Learning. All Rights Reserved. Permission is granted for the purchaser to print copies for non-commercial educational purposes only. Visit us at www.NewPathWorksheets.com.

As astronomers study stars, what they see may in reality no longer exist. Much of what we observe in the universe happened before the

Eart that and milli

Star Star clus gala

PREVIEW

Please <u>Sign In</u> or <u>Sign Up</u> to download the printable version of this worksheet

400 billion stars in the Milky Way. Galaxies are defined based on their appearance. The Milky Way is a particular type of galaxy known as a **spiral galaxy**. A spiral galaxy is disc-shaped and has a spiral form, much like a hurricane. There are a

vay

ce

to

variety of other galaxies that are described based on their shape such as irregular galaxies and elliptical galaxies.

It is estimated that about 33% of the galaxies are large, rounded groupings of stars. There is little gas in these galaxies so new stars are not forming. These galaxies are known as **elliptical galaxies**.

Within galaxies are groups of stars, gas clouds and other features. A gas cloud in a galaxy in which stars can form is called a **nebula**.

NASA image of the Eagle Nebula

There are groups of older stars that look like a ball of stars within galaxies. These groupings are known as **open clusters**.

е

ery

ce,

İS,

brig uni∖

The

PREVIEW

The mas

^{mas} Please <u>Sign In</u> or <u>Sign Up</u> to download If tr it w

the material in the universe is continually moving away from its point of origin. There is quantitative evidence to support this theory. At one time, scientists believed that other galaxies are moving away from ours. More recently, however, very careful measurements have shown that all the galaxies are actually moving away from each other. It is thought that the universe will continue to expand like this until it gets colder and darker and then eventually "dies." This is based on the assumption that there is not enough matter in the universe and therefore not enough gravitational pull to slow this expansion.

In actuality, scientists don't know for certain what the fate of the universe will be. It is also possible that there is so much matter in the universe that the gravitational pull between planets, stars, and other bodies will slow the expansion and eventually pull all matter together into a single mass.