

## Add/Subtract Fractions



Name Class Date



When adding fractions with like denominators, simply add the numerators and put the sum over the same denominator, for example,  $\frac{3}{8} + \frac{2}{8} = \frac{5}{8}$ .

What is the sum of  $\frac{2}{2} + \frac{3}{2}$ ?

| =                         |            | 6 6        |            |
|---------------------------|------------|------------|------------|
| $\mathbf{A} \frac{5}{12}$ | <b>B</b> 5 | <b>c</b> 5 | <b>D</b> 6 |

When the fractions have unlike denominators, begin by calculating equivalent fractions so the denominators are the same. For instance,  $\frac{5}{8} + \frac{1}{4} = \frac{5}{8} + \frac{2}{8} = \frac{7}{8}$  because  $\frac{2}{8} = \frac{1}{4}$ . How would you solve  $\frac{4}{9} + \frac{1}{3}$ ?

**A** 
$$\frac{4}{9} + \frac{1}{3} = \frac{4}{9} + \frac{3}{9}$$
 **C**  $\frac{4}{9} + \frac{1}{3} = \frac{5}{9}$  **B**  $\frac{4}{9} + \frac{1}{3} = \frac{5}{12}$  **D**  $\frac{4}{9} + \frac{1}{3} = \frac{4}{3} + \frac{1}{3}$ 



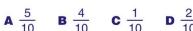
5

When subtracting, fractions must have like denominators. If the denominators are different, calculate equivalent fractions and then subtract.

How would you solve  $\frac{7}{2} - \frac{1}{4}$ ?



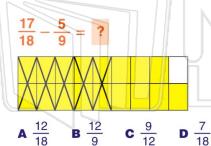
To solve the problem  $\frac{7}{15} + \frac{1}{3}$ , change  $\frac{1}{3}$  to  $\frac{5}{15}$  and then add.



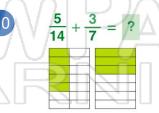

## **PREVIEW**



Please Sign In or Sign Up to download the printable version of this worksheet






$$\frac{8}{16}$$
 **B**  $\frac{11}{16}$  **C**  $\frac{8}{12}$  **D**  $\frac{14}{16}$ 











**B** 
$$\frac{8}{14}$$

**A** 
$$\frac{11}{14}$$
 **B**  $\frac{8}{14}$  **C**  $\frac{2}{7}$  **D**  $\frac{10}{14}$ 

$$D \frac{10}{14}$$



## Add/Subtract Fractions

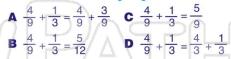
(C)

 $\mathbf{B}$ 



 $\mathbf{A}$ 

Name Class Date




When adding fractions with like denominators, simply add the numerators and put the sum over the same denominator, for example,  $\frac{3}{8} + \frac{2}{8} = \frac{5}{8}$ .

What is the sum of  $\frac{2}{6} + \frac{3}{6}$ ?



When the fractions have unlike denominators, begin by calculating equivalent fractions so the denominators are the same. For instance,  $\frac{5}{8} + \frac{1}{4} = \frac{5}{8} + \frac{2}{8} = \frac{7}{8}$  because  $\frac{2}{8} = \frac{1}{4}$ . How would you solve  $\frac{4}{9} + \frac{1}{3}$ ?





When subtracting, fractions must have like denominators. If the denominators are different, calculate equivalent fractions

and then subtract. How would you solve  $\frac{7}{3} - \frac{1}{3}$ ?



To solve the problem  $\frac{7}{15} + \frac{1}{3}$ , change  $\frac{1}{3}$  to  $\frac{5}{15}$  and then add.



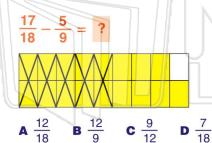




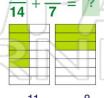


B

## **PREVIEW**


Please Sign In or Sign Up to download the printable version of this worksheet




**A**  $\frac{5}{10}$  **B**  $\frac{4}{10}$  **C**  $\frac{1}{10}$  **D**  $\frac{2}{10}$ 

**A**  $\frac{8}{16}$  **B**  $\frac{11}{16}$  **C**  $\frac{8}{12}$  **D**  $\frac{14}{16}$ 











**A**  $\frac{11}{14}$  **B**  $\frac{8}{14}$  **C**  $\frac{2}{7}$  **D**  $\frac{10}{14}$