

Properties of Matter

Name Class Date Which property determines the direction Gas molecules at the same temperature are always assumed to have of the exchange of internal energy between two objects? A uniform velocity temperatu B uniform acceleration B specific h straight-line motion mass random motion density Equal masses of zinc and copper at room 3 As the volume of a fixed mass of an ideal temperature are placed in an oven that gas increases at constant temperature, supplies heat energy at a rate of 1 kilojoule the product of the pressure and the per minute. Compared to the time needed for 5 **PREVIEW** Please Sign In or Sign Up to download the printable version of this worksheet 7 the density of that gas A decrease by one A decreases B increase by one **B** increases C remain unchanged C remains the D decrease by tw 9 What is the minimum energy needed to ionize a hydrogen atom in the n = 2 **A** 3.2×10^{-19} C energy state? **B** 4.5×10^{-19} C A 13.6 eV **C** 8.0×10^{-19} C **B** 10.2 eV **D** 9.6×10^{-19} C C 3.40 eV **D** 1.89 eV

Properties of Matter

Name Class Which property determines the direction Gas molecules at the same temperature are always assumed to have of the exchange of internal energy between two objects? A uniform velocity temperatu B uniform acceleration B specific h straight-line motion mass random motion density Equal masses of zinc and copper at room 3 As the volume of a fixed mass of an ideal temperature are placed in an oven that gas increases at constant temperature, supplies heat energy at a rate of 1 kilojoule the product of the pressure and the per minute. Compared to the time needed for 5 B **PREVIEW** Please Sign In or Sign Up to download the printable version of this worksheet 7 the density of that gas A decrease by one A decreases B B increase by one **B** increases C remain unchanged C remains the D decrease by two 9 What is the minimum energy needed to ionize a hydrogen atom in the n = 2 **A** 3.2×10^{-19} C energy state? **B** 4.5×10^{-19} C A 13.6 eV B **C** 8.0×10^{-19} C **B** 10.2 eV **D** 9.6×10^{-19} C C 3.40 eV **D** 1.89 eV